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We develop an extended version of the mode-coupling theory �MCT� for glass transition, which incorporates
activated hopping processes via the dynamical theory originally formulated to describe diffusion-jump pro-
cesses in crystals. The dynamical-theory approach adapted here to glass-forming liquids treats hopping as
arising from vibrational fluctuations in the quasiarrested state where particles are trapped inside their cages,
and the hopping rate is formulated in terms of the Debye-Waller factors characterizing the structure of the
quasiarrested state. The resulting expression for the hopping rate takes an activated form, and the barrier height
for the hopping is “self-generated” in the sense that it is present only in those states where the dynamics
exhibits a well defined plateau. It is discussed how such a hopping rate can be incorporated into MCT so that
the sharp nonergodic transition predicted by the idealized version of the theory is replaced by a rapid but
smooth crossover. We then show that the developed theory accounts for the breakdown of the Stokes-Einstein
relation observed in a variety of fragile glass formers. It is also demonstrated that characteristic features of
dynamical heterogeneities revealed by recent computer simulations are reproduced by the theory. More spe-
cifically, a substantial increase of the non-Gaussian parameter, double-peak structure in the probability distri-
bution of particle displacements, and the presence of a growing dynamic length scale are predicted by the
extended MCT developed here, which the idealized version of the theory failed to reproduce. These results of
the theory are demonstrated for a model of the Lennard-Jones system, and are compared with related computer-
simulation results and experimental data.
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I. INTRODUCTION

The decoupling of the self-diffusion constant from the
viscosity or the structural relaxation time—also referred to as
the breakdown of the Stokes-Einstein �SE� relation—that oc-
curs for temperatures T�1.2Tg near the glass transition tem-
perature Tg is among the most prominent features of fragile
glass formers �1–3�. The decoupling has been considered as
one of the signatures of spatially heterogeneous dynamics or
“dynamical heterogeneities” �4–7�. On the other hand, it is
also well recognized that the onset temperature �1.2Tg of
the decoupling is close to a crossover temperature at which
transport properties change their characters �8� and below
which the dynamics is thought to be dominated by activated
hopping processes over barriers �9�. Then, a natural question
arises as to possible connections among the decoupling, dy-
namical heterogeneities, and the hopping processes. In this
paper, such connections are explored by extending the ideal-
ized mode-coupling theory �MCT� for glass transition �10�.

The idealized MCT has been known as the most success-
ful microscopic theory for the glass transition. Indeed, exten-
sive tests of the theoretical predictions carried out so far
against experimental data and computer-simulation results
suggest that the theory deals properly with some essential
features of glass-forming liquids �11,12�. On the other hand,
a well-recognized limitation of the idealized MCT is the pre-
dicted divergence of the �-relaxation time at a critical tem-
perature Tc—also referred to as the nonergodic transition—
which is not observed in experiments and computer
simulations. An extended version of MCT developed in Ref.
�13� aims at incorporating activated hopping processes which
smear out the sharp nonergodic transition and restore ergod-

icity for T�Tc, but its applicability has been restricted to
schematic models. This is because of the presence of the
subtraction term in the expression for the hopping kernel,
which violates the positiveness—a fundamental property—of
any correlation spectrum.

There have been relatively few other attempts to go be-
yond the idealized MCT �14–16�, and incorporating the hop-
ping processes into the theory for glass transition has been a
major unsolved problem. We present here a new formulation
which is motivated by ideas from the dynamical theory origi-
nally developed to describe diffusion-jump processes in crys-
tals �17�. The dynamical-theory approach adapted in this
work to glass-forming liquids treats hopping as arising from
vibrational fluctuations in the quasiarrested state where par-
ticles are trapped inside their cages, and the hopping rate is
formulated in terms of the Debye-Waller factors characteriz-
ing the structure of the quasiarrested state. The resulting ex-
pression for the hopping rate takes an activated form, and the
barrier height for the hopping is “self-generated” in the sense
that it is present only in those states where the dynamics
exhibits a well defined plateau. It will be discussed how such
a hopping rate can be incorporated to develop an extended
version of MCT.

We will then investigate whether the developed theory
accounts for the mentioned decoupling for T�Tc. Such an
investigation makes sense since Tc is also found to be close
to 1.2Tg �8�, i.e., the onset temperature of the decoupling
�1,18�. It will also be examined whether our theory repro-
duces characteristic features of dynamical heterogeneities re-
vealed by recent computer simulations. More specifically, we
shall study whether the theory predicts a substantial increase
of the non-Gaussian parameter �19�, double-peak structure in
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the probability distribution of particle displacements �20,21�,
and the presence of a growing dynamic length scale �6�,
which the idealized MCT failed to reproduce.

The paper is organized as follows. In Sec. II, we formu-
late our new extended MCT. Numerical results of the theory
are presented in Sec. III for a model of the Lennard-Jones
system, and connections of the hopping processes with the
breakdown of the SE relation and with aspects of dynamical
heterogeneities are discussed. The paper is summarized in
Sec. IV. Appendix A outlines a derivation of the hopping
kernel formulated in Ref. �13� from a different perspective,
and Appendix B is devoted to the derivation of the extended-
MCT equations for the mean-squared displacement and the
non-Gaussian parameter.

II. THEORY

We start from surveying basic features of the idealized
MCT �10� �see also Appendix A�. A system of N atoms of
mass m distributed with density � shall be considered. Struc-
tural changes as a function of time t are characterized by
coherent density correlators �q�t�= ��

q�
*eiLt�q�� /NSq. Here �q�

=�i exp�iq� ·r�i� with r�i referring to ith particle’s position de-
notes density fluctuations for wave vector q�; L the Liouville
operator; �¯� the canonical averaging for temperature T;
Sq= ��

q�
*�q�� /N the static structure factor; and q= 	q� 	. Within

the Zwanzig-Mori formalism �22� one obtains the following
exact equation of motion:

�t
2�q�t� + �q

2�q�t� + �q
2


0

t

dt�mq�t − t���t��q�t�� = 0.

�1a�

Here �q
2=q2kBT /mSq with Boltzmann’s constant kB, and the

memory kernel mq�t� describes correlations of fluctuating
forces. Introducing the Laplace transform with the conven-
tion f�z�= i�0

�dteiztf�t� �Im z�0�, Eq. �1a� is equivalent to
the representation

�q�z� = − 1/�z − �q
2/�z + �q

2mq�z��
 . �1b�

Under the mode-coupling approximation, the fluctuating
forces are approximated by their projections onto the sub-
space spanned by pair-density modes �k��p�. The factorization
approximation for dynamics of the pair-density modes yields
the following idealized-MCT expression for the memory ker-
nel to be denoted as mq

id�t�:

mq
id�t� =
 dk�V�q� ;k�,p���k�t��p�t� . �2a�

Here p� =q� −k�, and the vertex function is given by

V�q� ;k�,p�� =
�

2�2	�3q4SqSkSp��q� · k��ck + �q� · p��cp�2, �2b�

in terms of Sq and the direct correlation function cq
= �1−1 /Sq� /�. The idealized-MCT equations �1a�, �1b�, �2a�,
and �2b� exhibit a bifurcation for �q�t→��= fq—also re-
ferred to as the nonergodic transition—at a critical tempera-

ture Tc �10�. For T�Tc, the correlator relaxes towards fq
=0 as expected for ergodic liquid states. On the other hand,
density fluctuations for T�Tc arrest in a disordered solid,
quantified by a Debye-Waller factor fq�0.

It is the factorization approximation �see Eq. �A7�� that
leads to the nonergodic transition at Tc. Therefore, one has to
consider corrections, mq�z�=mq

id�z�+
mq�z�, to go beyond
the idealized MCT, which shall be quantified via the hopping
kernel defined by

�q�z� = − 1/mq�z� + 1/mq
id�z� . �3a�

The correction term reads 
mq�z�=mq
id�z��q�z�mq�z�, and the

memory kernel mq�z� can be expressed as

mq�z� = mq
id�z�/�1 − �q�z�mq

id�z�� . �3b�

As demonstrated in Appendix A, one can derive based on
Eq. �3a� an expression for �q�z� which is essentially the same
as that of the extended MCT of Götze and Sjögren �13,23� by
applying the Zwanzig-Mori formalism to mq�t� and then in-
troducing the corresponding mode-coupling approximation
for the “memory kernel” to mq�t�. Such a hopping kernel,
however, retains the same problem mentioned in Sec. I. In-
stead, our attempt for the extension of the idealized MCT is
motivated by the following observation: substituting Eq. �3b�
into Eq. �1b� yields for small z �11�

�q�z� = − 1/�z + �q�z� − �q
2/�z + �q

2mq
id�z��
 . �4�

Dropping �q�z�, this equation reduces to the one of the ide-
alized MCT: approaching Tc from above, mq

id�z� for small z
becomes larger, and so does �q�z�, leading to the nonergodic
transition at T=Tc. In the presence of �q�z�, on the other
hand, the transition is cutoff since the third term in the de-
nominator of Eq. �4� becomes unimportant when mq

id�z� be-
comes large. The long-time dynamics of �q�t� in this case is
thus determined by �q�z� for small z. This observation raises
a possibility of constructing a new approximate theory for
�q�z� described below.

We first derive a rate formula for a hopping process in
which an atom at r�i jumps to a nearby site r�i� separated by an
interparticle distance. The presence of such a process at low
temperatures has been revealed by computer simulations
�24–26�. This will be done via the dynamical theory origi-
nally developed to describe diffusion-jump processes in crys-
tals �17�. The approach adapted here to glass-forming liquids
treats hopping as arising from vibrational fluctuations
�phonons� in the quasiarrested state where particles are
trapped inside their cages. Let us suppose that the quasiar-
rested state characterized by the Debye-Waller factors fq can
be described as a frozen, irregular lattice �27�. Each particle

then has a well defined equilibrium position R� i within the
lifetime of the quasi-arrested state, and we introduce the dis-

placement from the equilibrium position via r�i=R� i+u��R� i�.
The essential feature of the hopping process is that a jumping
atom passes over a barrier formed by neighbors which block
a direct passage to the new site. The criterion that determines
whether or not a given fluctuation is sufficient to cause a
jump is therefore concerned with the relative displacements
of the atom and the saddlepoint. We thus employ as a “reac-
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tion coordinate” �17�, x�t�= �u��R� i+s� , t�−u��R� i , t�� ·s�̂, and as-
sume that a hopping occurs when x�t� exceeds a critical
value x*, which measures the size of fluctuation needed to
cause a jump. Here s� denotes the saddlepoint position with

respect to R� i, and the scalar product selects only those fluc-
tuations directed towards s�̂=s� /s. Each phonon displaces a
hopping atom towards the saddlepoint. The phonon phases
are random, but the displacements may occasionally coincide
in such a way that a hopping process occurs. The hopping
rate whop can then be calculated from such a probability per
unit time, and one obtains along the line described in Ref.
�17� with the isotropic Debye approximation, whop
= �1 /2	��3 /5�1/2�D exp�−3mv2
2 /2kBT�, in terms of the
sound velocity v. Here �D=kDv with the Debye wave num-
ber kD= �6	2��1/3, and 
�x* /s. Notice that the sound veloc-
ity here refers to the one in the quasiarrested state, which is
renormalized by the Debye-Waller factors �28,29�. To em-
phasize this, the sound velocity shall be expressed as v
=�ML / ��m� in terms of the �longitudinal� elastic modulus

ML = ML
0 + �ML, �5a�

consisting of the equilibrium value ML
0 =��kBT� /S0, where

S0�Sq→0, and an additional contribution for the quasiar-
rested state, for which MCT yields �30�

�ML = ��kBT� 
 dkVL�k�fk
2, �5b�

with

VL�k� =
�k2Sk

2

4	2 �ck
2 +

2

3
�kck��ck +

1

5
�kck��

2� . �5c�

The hopping rate is then given by

whop =
1

2	
�3

5
�1/2

�D exp�−
3ML

2�kBT

2� . �6�

The pre-exponential factor represents a mean attack fre-
quency while the exponential term of the activated form
gives the probability that the system is found at the critical
displacement x*. In addition, the barrier height for the hop-
ping is “self-generated” in the sense that it is determined by
the plateau heights fq of the coherent density correlators, and
is present only in those states where the dynamics exhibits a
well defined plateau.

We next relate the hopping rate whop to the hopping kernel
�q�z�. Our approach here is partly phenomenological in na-
ture, but does not introduce any adjustable parameter �see the
resulting equations �14� and �15��. Our discussion becomes
simpler if the tagged-particle density correlator �q

s�t�—the
self part of �q�t�—is considered, so this case shall be con-
sidered first. Hereafter, quantities referring to the tagged par-
ticle shall be marked with the superscript or subscript “s.”
The Zwanzig-Mori equation for �q

s�t� has the same form as
Eq. �1a� with �q, mq, and �q

2 replaced by �q
s , mq

s , and
��q

s�2=q2kBT /m, respectively; the idealized-MCT kernel
corresponding to Eq. �2a� is given by mq

s id�t�
=�dk�Vs�q� ;k� , p���k�t��p

s �t� with Vs=�Sk��q� ·k��ck�2 / ��2	�3q4�
�31�; and Eq. �3b� holds with mq, mq

id, and �q replaced by mq
s ,

mq
s id, and �q

s , respectively. The arrested part fq
s of the cor-

relator �q
s�t� is referred to as the Lamb-Mössbauer factor.

In the absence of the hopping kernel, the idealized kernel
mq

s id�t� for T�Tc arrests at a plateau for long times whose
height is given by Cq

s = fq
s / �s1− fq

s� �10�, i.e., there holds
mq

s id�z�=−Cq
s /z for small z. Substituting this into Eq. �4� for

�q
s�z� yields for small z

�q
s�z� = − fq

s /�z + fq
s�q

s�z�� , �7�

which determines the � relaxation of �q
s�t�—the decay from

the plateau fq
s to zero—in the presence of �q

s�z�.
On the other hand, when the � relaxation is dominated by

hopping processes characterized by a rate whop�r�→r���, the
van Hove self correlation function Gs�r� , t�, related to �q

s�t�
via the inverse Fourier transform

Gs�r�,t� =
1

�2	�3 
 dq�e−iq� ·r��q
s�t� , �8�

and proportional to the probability of finding the tagged par-
ticle at r� and t �22�, obeys a simple rate equation

�tGs�r�,t� = �
l�

�whop�r� + l� → r��Gs�r� + l�,t�

− whop�r� → r� + l��Gs�r�,t�� . �9�

We assume that only hoppings with 	l�	�a are relevant, in
which a��0

rmindrr�N�r� /Nc� denotes the weighted average of
interparticle distances. Here rmin denotes the first minimum
of the radial distribution function g�r� defining the first shell;
N�r�dr with N�r�=4	r2�g�r� gives the mean number of par-
ticles at distance between r and r+dr; and Nc=�0

rmindrN�r� is
the coordination number of the first shell. The quantity a
serves as an analog the lattice spacing in crystals. Since there
is no site dependence in the hopping rate we formulated �see
Eq. �6��, there holds

�tGs�r�,t� = whop �
	l�	�a

�Gs�r� + l�,t� − Gs�r�,t�� . �10�

Fourier transforming this yields

�t�q
s�t� = − whop �

	l�	�a

�1 − e−iq� ·l���q
s�t� . �11�

Assuming that l� are oriented at random, the summation �	l�	�a

is given by the orientational average multiplied by the num-

ber of sites satisfying 	l�	�a, which is approximated by the
coordination number Nc of the first shell. This leads to

�t�q
s�t� = − whopNc�1 − sin�qa�/�qa���q

s�t� . �12�

Noticing that the � relaxation of �q
s�t� starts from the plateau

fq
s , the Laplace transform of this equation reads

�q
s�z� = − fq

s /�z + iwhopNc�1 − sin�qa�/�qa��
 . �13�

By comparing Eqs. �7� and �13�, one arrives at the following
expression for the hopping kernel:

�q
s�z� = iwhopNc�1 − sin�qa�/�qa��/fq

s . �14�
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The collective hopping kernel �q�z� consists of the self
and distinct parts, �q�z�=�q

s�z� /Sq+�q
dist�z�. In the present

work, we shall adopt a simple model for �q�z� in which the
distinct part describing possible correlated jumps is ne-
glected:

�q�z� = �q
s�z�/Sq. �15�

This model for �q�z� looks oversimplified, but nontrivial the-
oretical predictions follow from such a simple model as will
be demonstrated in Sec. III.

Equations �1a� and �3b� with Eqs. �2a�, �6�, �14�, and �15�
constitute our new extended-MCT equations for the coherent
density correlator �q�t�; corresponding equations hold for the
tagged-particle density correlator �q

s�t� with the aforemen-
tioned replacement of �q, mq, �q

2, mq
id, and �q by �q

s , mq
s ,

��q
s�2, mq

sid, and �q
s , respectively. The extended-MCT equa-

tions for the mean-squared displacement and the non-
Gaussian parameter, which are required for our discussion in
Sec. III, are derived in Appendix B. All these equations can
be solved provided Sq and 
2 are known as input. �We notice
that fq and fq

s can be obtained based on the knowledge of Sq
�10�. fq and fq

s evaluated at T=Tc enter the hopping kernels
for T
Tc since they determine the plateau height of the
density correlators for this temperature regime �10�, while
T-dependent fq and fq

s enter the ones for T�Tc.�

III. RESULTS AND DISCUSSION

In the following, numerical results of the extended theory
will be presented for the Lennard-Jones �LJ� system in which
particles interact via the potential V�r�=4�LJ���LJ /r�12

− ��LJ /r�6
. Sq shall be evaluated within the Percus-Yevick
approximation �22�. This model has been studied in Ref. �29�
based on the idealized MCT. From here on, all quantities are
expressed in reduced units with the unit of length �LJ, the
unit of energy �LJ �setting kB=1�, and the unit of time
�m�LJ

2 /�LJ�1/2. The dynamics as a function of T shall be con-
sidered for a fixed density �=1.093, for which the critical
temperature of the idealized MCT is found to be Tc�1.637
�29�. For 
2 entering into the extended-MCT equations, we
set 
2=0.10 unless otherwise stated, which is estimated in
Ref. �17� from migration properties of crystals. We notice
that this value of 
2 is consistent with the Lindemann length
�32�. We also confirmed that the results to be presented be-
low do not rely on the specific value of 
2=0.10: qualita-
tively the same results were obtained with other values of 
2

�see Fig. 2�, as far as those values consistent with the Linde-
mann length are chosen.

A. Coherent density correlators

Figure 1 shows the coherent density correlators �q�t� for
representative reduced temperatures ���Tc−T� /Tc whose
values are specified in the caption. The wave numbers shown
are q=7.3 �upper panel� and q=10.0 �lower panel�, which
correspond to the first-peak and first-minimum positions of
Sq, respectively. The dashed curves refer to the idealized-
MCT results which exhibit the ergodic ���0� to nonergodic

��
0� transition at T=Tc ��=0� �10,33�. The solid curves
denote the results from the extended MCT.

It is seen from Fig. 1 that the solid curves for �=−0.10
and −0.05 are hardly affected by the hopping processes, but
a slight deviation from the dashed curve is discernible in the
�-relaxation regime of the solid curve for �=−0.03. The
solid curve for �=−0.01 exhibits the same decay up to
log10 t�2 as the corresponding dashed curve, but the relax-
ation thereafter is considerably accelerated. The effects from
the hopping processes are drastic for ��0 where the ideal-
ized MCT predicts the arrested dynamics at the plateau fq,
whereas the corresponding solid curves from the extended
theory relax to zero for long times.

It would be interesting to analyze these extended-MCT
results based on various scaling laws developed in Ref. �13�.
Such an analysis, however, shall be deferred to subsequent
publications, and in the following, we will focus on the con-
nections of the hopping processes with the breakdown of the
SE relation and with aspects of dynamical heterogeneities.

B. Breakdown of the Stokes-Einstein relation

Here we investigate the breakdown of the SE relation
based on the extended MCT, and compare our theoretical

0.0
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1.0
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log t10

q=7.3

q=10.0

φ (t)q

-2 0 2 4 6 8

FIG. 1. �Color online� Coherent density correlators �q�t� as a
function of log10 t for reduced temperatures ���Tc−T� /Tc=−0.10,
−0.05, −0.03, −0.01, +0.01, +0.05, and +0.10 �from left to right�.
The wave numbers are q=7.3 �upper panel� and q=10.0 �lower
panel�, which correspond to the first-peak and first-minimum posi-
tions of Sq, respectively. The solid and dashed curves denote the
results from the extended and idealized MCT, respectively. The ar-
rows in the upper panel refer to the peak positions of the non-
Gaussian parameter �2�t� for �= +0.01, +0.05, and +0.10 �see Sec.
III C�.
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prediction with related computer-simulation results and ex-
perimental data. A convenient experimental measure of the
breakdown is a product D� /T formed with the diffusion co-
efficient D and the viscosity �, which grows as the SE rela-
tion fails �1�. In the present study, the �-relaxation time �q*
of the coherent density correlator at the peak position q*

=7.3 of Sq, defined via the convention �q*��q*�=0.1, shall be
used as a substitute for � /T. This is justified since the T
dependence of the �-relaxation time at the structure factor
peak is known to track that of � /T �34,35�. The diffusion
coefficient is determined from the long-time asymptote D
=limt→� �r2�t� /6t of the mean-squared displacement �r2�t�
���r�s�t�−r�s�0��2�, whose extended-MCT equations are de-
rived in Appendix B 1.

Figure 2 shows the theoretical prediction for the product
D�q* as a function of the reduced temperature �= �Tc

−T� /Tc. The solid and dashed curves, both referring to the
left scale, denote the results from the extended and idealized
MCT, respectively. The idealized-MCT result for D�q* varies
little for ��0 �the increase is only about 10% for the � range
shown in Fig. 2�, and does not account for the breakdown of
the SE relation. This reflects the universal �-scale coupling
predicted by the idealized MCT �10�, according to which
both the �-relaxation time �q* and the inverse of the diffu-
sivity 1 /D exhibit a universal power-law behavior 	�	−� for
small �, and hence, the product D�q* approaches a constant
for �→0− �T→Tc+ �. On the other hand, the extended MCT

predicts a significant increase of the product D�q*. Figure 2
thus shows one of the main results of this paper that the
hopping processes are responsible for the breakdown of the
SE relation.

Also added in Fig. 2 are the extended-MCT results with

2=0.09 �dashed-dotted curve� and 0.11 �dotted curve� to
see the dependence of the theoretical results on the value of

2. �Remember that 
2=0.10 in the other extended-MCT
results.� It is seen that 
2 affects only quantitative aspects of
the theoretical results. We also confirmed that qualitative fea-
tures of the theoretical results to be presented below are not
altered with other values of 
2 as far as those values consis-
tent with the Lindemann length are chosen, and in the fol-
lowing we shall omit this kind of analysis for brevity.

Figure 2 also presents the comparison of the theoretical
result with the D� /T data of salol taken from Ref. �1�
�circles, right scale�. The experimental data are also plotted
versus � with Tc=262.7 K of salol �see Fig. 16 of Ref. �36��.
A direct comparison between the theoretical result and the
experimental data can be made by plotting them on logarith-
mic scales of the same range as done in Fig. 2. It is seen that
the extended-MCT result is consistent with the experimental
data concerning the degree of the breakdown of the SE rela-
tion.

The inset of Fig. 2 compares the extended-MCT result
�solid curve� with simulation results for a binary mixture of
Lennard-Jones particles �37� �filled squares� and a binary
mixture of dumbbell molecules of elongation �=0.8 �38�
�filled triangles�. Here the comparison is done in terms of the
ratio R of the product D�q* to the one at a reference tempera-
ture where the SE relation holds. �See Ref. �39� concerning
the details of the comparison.� By definition, the ratio R is
unity if the SE relation holds, whereas it exceeds unity as the
SE relation fails. Again, the theoretical prediction is consis-
tent with the simulation results.

On the other hand, recent measurements �2,3� indicate
that the self-diffusion coefficient is about 100 times faster
near Tg than that predicted by the SE relation. This is about
a factor of 10 larger compared to our theoretical prediction
near Tg �see Fig. 2�, assuming that Tg of the present system is
located at ��0.17 estimated from the reduced temperature at
Tg of salol. This implies that our model for the hopping
kernel might be too primitive to be applicable near Tg. In the
following, we shall therefore focus mainly on the regime �
� +0.05 where our theoretical prediction is consistent with
the simulation results and experimental data.

C. Aspects of dynamical heterogeneities

1. Non-Gaussian parameter

We next explore a connection of the hopping processes
with aspects of dynamical heterogeneities. We start from the
discussion on the non-Gaussian parameter �2�t� which char-
acterizes deviations from the Gaussian behavior of the van
Hove self correlation function �40�:

�2�t� �
3

5
��r4�t�/�r2�t�2� − 1. �16�

Here �r4�t����r�s�t�−r�s�0��4�. General properties of �2�t� re-
vealed by computer simulations can be summarized as fol-
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FIG. 2. �Color online� Logarithmic representation of the product
D�q* as a function of the reduced temperature �= �Tc−T� /Tc. The
solid and dashed curves, both referring to the left scale, denote the
results from the extended and idealized MCT, respectively. Also
added are the extended-MCT results with 
2=0.09 �dashed-dotted
curve, left scale� and 0.11 �dotted curve, left scale�. �Remember that

2=0.10 in the other extended-MCT results.� Circles �right scale�
denote the D� /T data of salol taken from Ref. �1� and plotted
versus � with Tc=262.7 K �36�. The arrow marks Tg=218 K of
salol. Both the left and right ordinates range over 1.3 decades. The
inset exhibits the ratio R of the product D�q* to the one at a refer-
ence temperature where the SE relation holds. The prediction from
the extended MCT �solid curve� is compared with simulation results
for a binary mixture of Lennard-Jones particles �37� �filled squares�
and a binary mixture of dumbbell molecules of elongation �=0.8
�38� �filled triangles�. The procedure for the comparison is detailed
in Ref. �39�.
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lows �19�: �i� on the time scale at which the motion of par-
ticles is ballistic, �2�t� is zero; �ii� upon entering the time
scale of the � relaxation where the density correlators are
close to their plateaus, �2�t� starts to increase; and �iii� on the
time scale of the � relaxation, �2�t� decreases to zero, re-
flecting diffusive dynamics at long times which is a Gaussian
process. It is also observed that the maximum value of �2�t�
and the time at which this maximum is attained both increase
with decreasing T �19�. Positive �2�t� means that the prob-
ability for a particle to move very far is enhanced relative to
the one expected for a random-walk process. The peak height
of �2�t� has therefore been interpreted as a measure of the
dynamical heterogeneity that reflects different local environ-
ments around an individual particle.

The extended-MCT equations for determining the non-
Gaussian parameter are derived in Appendix B 2, and the
resulting �2�t� are plotted in Fig. 3 for reduced temperatures
�= �Tc−T� /Tc specified in the caption. The corresponding re-
sults from the idealized MCT, but for ��0 �i.e., T�Tc� only,
are presented as dashed curves in the inset to avoid the over-
crowding of the figure. As noticed at the end of Appendix B
2, the peculiar behavior �2�t→0�=−2 /3 for short times as
predicted by our theory simply reflects that the ideal-gas con-
tribution to the memory kernel is discarded in the mode-
coupling approach. Such an ideal-gas contribution is respon-
sible for the short-time ballistic regime, but is irrelevant as
far as the long-time dynamics is concerned.

It is seen from the inset of Fig. 3 that the peak height of
�2�t� predicted by the idealized MCT does not grow with
decreasing T, and it is underestimated by almost an order of
magnitude compared to that reported in computer simula-
tions �19�. This defect has already been known from the
theoretical work in Ref. �31�, and has been demonstrated
more explicitly in Ref. �21�. The main panel of Fig. 3, on the
other hand, indicates that a substantial improvement is
achieved by the extended MCT in that the peak height grows

upon lowering T to an extent as observed in simulations �19�.
�Notice an order of magnitude difference in the ordinate
scales of the main panel and the inset.� Thus, the extended
MCT reproduces a feature of the dynamical heterogeneity
characterized by the non-Gaussian parameter, and this is ac-
complished via the inclusion of the hopping processes.

2. Probability distribution of particle displacements

In terms of the non-Gaussian parameter �2�t�, the dynam-
ics is most heterogeneous in the late-� or early � regime
where the density correlators start to decay from the plateau
�see the upper panel of Fig. 1�. Recently, it has been recog-
nized from studies of four-point density correlation functions
that there exists dynamical heterogeneity on a much longer
time scale comparable to the �-relaxation time �q* �41�. Rec-
ognizing that �2�t� is dominated by those particles which
move farther than expected from a Gaussian distribution of
particle displacements, Flenner and Szamel introduced a new
non-Gaussian parameter ��t���1 /3��r2�t���r2�−1�t�−1 with
��r2�−1�t���1 / �r�s�t�−r�s�0��2�, which weights strongly the
particles which have not moved as far as expected from the
Gaussian distribution �20�. It is found that the peak position
of ��t� is located on the time scale of �q*, and hence, char-
acterizes the longer-time dynamical heterogeneity. It is also
observed that the peak position of ��t� corresponds to the
time at which two peaks in the probability distribution of
particle displacements, reflecting populations of mobile and
immobile particles �see below�, are of equal height. This im-
plies that the presence of the longer-time dynamical hetero-
geneity can be examined also through such a probability dis-
tribution.

The mentioned probability distribution P�log10��r� ; t� of
the logarithm of particle displacements �r at time t can be
obtained from the van Hove self correlation function
Gs��r , t� by the transformation �20�

P�log10��r�;t� = ln�10�4	�r3Gs��r,t� . �17�

The probability distribution is defined such that the integral
�x0

x1dxP�x ; t� is the fraction of particles whose value of
log10��r� is between x0 and x1. If the motion of a particle is
diffusive with a diffusion coefficient D, there holds
Gs��r , t���1 / �4	Dt�3/2�exp�−�r2 /4Dt� �22�. As argued in
Ref. �20�, the shape of the corresponding probability distri-
bution under the diffusion approximation becomes time in-
dependent with the peak height �2.13.

Figure 4 shows the extended-MCT result for the probabil-
ity distribution P�log10��r� ; t� �solid curves� at the reduced
temperature �= �Tc−T� /Tc= +0.01. The times shown are t
=5.4�103, 4.3�104, 1.7�105, 3.4�105, 6.8�105, and
2.7�106. The �-relaxation time �q* at this reduced tempera-
ture is �q*=4.3�105 �see Fig. 1�. The dashed curves refer to
the probability distribution under the diffusion approxima-
tion for t=6.8�105 and 2.7�106. The inset exhibits the
mean-squared displacement �r2�t� at �= +0.01 on double
logarithmic scales, from which one understands that the
times chosen in the main panel range from the late-�, plateau
regime to the final � regime where �r2�t��6Dt.
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FIG. 3. �Color online� Non-Gaussian parameter �2�t� as a func-
tion of log10 t based on the extended MCT for reduced temperatures
�= �Tc−T� /Tc=−0.10, −0.05, −0.03, −0.01, +0.01, +0.03, and
+0.05 �from left to right�. The corresponding results from the ide-
alized MCT, but for ��0 �i.e., T�Tc� only, are presented as dashed
curves in the inset to avoid the overcrowding of the figure. Notice
about an order of magnitude difference in the ordinate scales.
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The appearance of the plateau in �r2�t� is due to particles
being caged �31�, and the peak of the probability distribution
P�log10��r� ; t� for t=5.4�103 reflects populations of such
“immobile” particles. At later times, the second peak devel-
ops in the probability distribution at log10��r��0.0 �i.e., �r
�1.0�, reflecting “mobile” particles hopping over interpar-
ticle distances. One infers from Fig. 4 that the time at which
the two peaks in P�log10��r� ; t� become of equal height is
located on the time scale of �q*, and this is consistent with
the simulation result �20�. Subsequently, the double-peak
structure disappears, and the probability distribution ap-
proaches the one well described by the diffusion approxima-
tion.

Coexistence of mobile and immobile particles is a direct
indication of the dynamical heterogeneity �4�. Our results
shown in Fig. 4 indicate that the hopping processes are re-
sponsible for such a double-peak structure in the probability
distribution P�log10��r� ; t� occurring on the time scale �q* of
the � relaxation. This also explains why the idealized MCT
failed to reproduce the double-peak structure in
P�log10��r� ; t� �21�.

3. Growing dynamic length scale

Figure 4 also implies that the probability distribution ap-
proaches its diffusion asymptote only after its peak position
exceeds those length scales where the double-peak structure
in P�log10��r� ; t� is observable. Thus, there is a certain length
scale above which Fickian diffusion sets in �42�. In the fol-

lowing, we shall quantify such a length scale characterizing
the crossover from non-Fickian to Fickian diffusion, and in-
vestigate its T dependence.

To this end, let us introduce the ratio Rq
s of the product

q2D�q
s to the one at some reference temperature, which is an

analog of the ratio R studied in the inset of Fig. 2. Here the
�-relaxation time �q

s of the tagged-particle density correlator
is defined via the convention �q

s��q
s�=0.1. Under the diffu-

sion approximation, there holds �q
s�t��exp�−q2Dt� �22�.

Thus, the product q2D�q
s is constant, and hence, the ratio Rq

s

is unity, if the dynamics on the length scale �2	 /q is diffu-
sive. On the other hand, the ratio Rq

s exceeds unity if the
dynamics on the length scale �2	 /q is non-Fickian. We
shall therefore define the crossover wave number qonset via
Rqonset

s =1.1, i.e., as the wave number at which the ratio Rq
s

reaches 10% above unity. The onset length scale of Fickian
diffusion shall then be defined via lonset�2	 /qonset.

Figure 5 exhibits the ratio Rq
s for wave numbers q=7.3

�solid curve�, 4.0 �dashed curve�, 2.0 �dashed-dotted curve�,
and 1.0 �dotted curve�, as a function of the reduced tempera-
ture �= �Tc−T� /Tc. The reference temperature Tref for calcu-
lating Rq

s is chosen such that �Tc−Tref� /Tc=−0.125. The hori-
zontal dashed line marks Rq

s =1.1 chosen to determine the
crossover wave number qonset introduced above.

For reduced temperatures ��−0.04, all the ratios Rq
s

shown in Fig. 5 are less than 1.1, implying that the tagged-
particle dynamics on the length scales comparable to and
larger than 2	 /7.3�0.86 can be well described by the Fick-
ian diffusion law. For ��−0.04, Rq

s for q=7.3 exceeds 1.1,
meaning that the dynamics is diffusive only on length scales
larger than 0.86. The onset length scale lonset of Fickian dif-
fusion increases to 2	 /4.0�1.6 at ��−0.03, and to
2	 /2.0�3.1 at ��0, as can be inferred from Fig. 5. The
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FIG. 4. �Color online� Probability distribution P�log10��r� ; t� of
the logarithm of single particle displacements based on the ex-
tended MCT at the reduced temperature �= �Tc−T� /Tc= +0.01
�solid curves�. The times shown are t=5.4�103, 4.3�104, 1.7
�105, 3.4�105, 6.8�105, and 2.7�106 �from left to right�. The
�-relaxation time �q* at this reduced temperature is �q*=4.3�105

�see Fig. 1�. The dashed curves refer to the probability distribution
under the diffusion approximation for t=6.8�105 and 2.7�106.
The inset exhibits the time evolution of the mean-squared displace-
ment �r2�t� at �= +0.01 on double logarithmic scales �solid curve�.
The dotted curve refers to the diffusion asymptote, 6Dt.
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a function of the reduced temperature �.
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length scale lonset so obtained as a function of the reduced
temperature � is summarized in the inset of Fig. 5. Thus, the
extended MCT predicts the presence of a growing dynamic
length scale. It is anticipated that lonset is intimately related to
the mean size of the dynamic clusters observed in simula-
tions �6�, since Fickian diffusion, i.e., a random-walk pro-
cess, is possible only over those length scales where the co-
herence length of such clusters is smeared out.

IV. SUMMARY

In this paper, we developed an extended version of MCT
for glass transition. The activated hopping processes are in-
corporated via the dynamical theory, originally formulated to
describe diffusion-jump processes in crystals and adapted in
this work to glass-forming liquids. The dynamical-theory ap-
proach treats hopping as arising from vibrational fluctuations
in the quasiarrested state where particles are trapped inside
their cages, and the hopping rate is formulated in terms of
the Debye-Waller factors characterizing the structure of the
quasiarrested state. The resulting expression for the hopping
rate takes an activated form, and the barrier height for the
hopping is “self-generated” in the sense that it is present only
in those states where the dynamics exhibits a well defined
plateau. It is discussed how such a hopping rate can be in-
corporated to develop an extended MCT.

The extended MCT deals with the interplay of two effects.
Nonlinear interactions of density fluctuations, as described
by the idealized memory kernel mq

id�z�, lead to the cage effect
with a trend to produce arrested states for sufficiently low
temperatures. Phonon assisted hoppings, taken into account
via the hopping kernel �q�z�, lead to the � relaxation at all
temperatures and restore ergodicity. The interplay of these
two effects is described by the memory kernel mq�z� via Eq.
�3b� which has the form of a Dyson equation. As demon-
strated in Sec. III for a model of the Lennard-Jones system, it
leads to nontrivial theoretical predictions concerning the
breakdown of the SE relation and characteristic features of
dynamical heterogeneities, which the idealized version of the
theory failed to reproduce.

In dense liquids, relaxation is necessarily connected with
rearrangements of large complexes of particles. We have
seen in Fig. 3 that the peak height of the non-Gaussian pa-
rameter �2�t� grows substantially in the late-� regime as the
temperature is decreased. This enhanced probability for a
particle to move further is what one would expect as a result
of the building of a backflow in the liquid, and it is antici-
pated that the stringlike motions observed in the late-� re-
gime �43� reflect such a backflow pattern. The backflow was
originally discussed by Feynman and Cohen and taken into
account in their theory for roton spectrum in liquid helium
�44�. Subsequently, it was found that the quantum-
mechanical analog of the idealized memory kernel repro-
duces the Feynman-Cohen result for roton spectrum �45�,
i.e., the backflow phenomenon is within the scope of the
idealized MCT �23�. However, the idealized memory kernel
alone does not account for such a pronounced peak in �2�t�
as observed in computer simulations �31�. This implies that
the mentioned interplay with the hopping kernel plays a rel-

evant role for the substantial increase of �2�t� and the build-
ing of the backflow.

The double-peak structure in the probability distribution
P�log10��r� ; t� of particle displacements, which is most pro-
nounced on the time scale �q* of the � relaxation and disap-
pears at longer times �see Fig. 4�, reflects coexistence of
mobile and immobile particles with a lifetime ��q*, and is a
direct indication of the dynamical heterogeneity �4�. The ex-
tended MCT developed here provides a natural explanation
for its origin in terms of the cage and hopping effects. As
argued in Sec. III C 3, the lifetime of the double-peak struc-
ture gives rise to a growing dynamic length scale lonset, which
is associated with the decoupling of the time scales of the �
processes occurring on length scales smaller than lonset from
the diffusion coefficient. The breakdown of the SE relation
discussed in Sec. III B can also be understood in terms of the
decoupling of the �-relaxation time �q* from the diffusivity
which occurs when lonset exceeds the average interparticle
distance �2	 /q*. It is anticipated that the onset length scale
lonset of Fickian diffusion is intimately related to the mean
size of the dynamic clusters observed in simulations �6�,
since Fickian diffusion, i.e., a random-walk process, is pos-
sible only over those length scales where the coherence
length of such clusters is smeared out. Then, our picture for
the breakdown of the SE relation is consistent with that of
Ref. �6�, where the connection between decoupling phenom-
ena and the growing coherence length scale is discussed.

It is certainly necessary to improve further the theory de-
veloped here. First of all, possible correlated hopping effects
are discarded in our model for the hopping kernel. This
might explain why our theory underestimates the degree of
the breakdown of the SE relation near Tg, which we referred
to in connection with Fig. 2. That the development of the
length scale lonset seems suppressed for ��0, as can be in-
ferred from the inset of Fig. 5, might also be related to such
a defect of the present theory. Second, we did not determine

2—a square of the ratio 
=x* /a formed with the critical
size x* of the phonon-assisted fluctuation needed to cause a
hopping and the average interparticle distance a �see Sec.
II�—microscopically, but simply took a value �
2=0.10�
from the literature. Regarding this, let us mention that quali-
tatively the same results as those presented in Sec. III can be
obtained with other values of 
2 �see Fig. 2�, as far as those
values consistent with the Lindemann length �32� are chosen.
Thus, our theoretical results do not rely on the specific value
of 
2=0.10. But, of course, it is desirable to determine 
2

consistently within the theory. Third, the �-relaxation
stretching is not enhanced at low temperatures. For example,
the stretching exponents �q, obtained via Kohlrausch-law fits
of the density correlators shown in Fig. 1, for q=10.0 are
0.76, 0.79, and 0.80 for �= +0.01, +0.05, and +0.10, respec-
tively. One possibility to overcome this defect is to take into
account distribution of hopping rates or barrier heights,
which can be done, e.g., by considering fluctuations in the
Debye-Waller factors and 
2. Four-point density correlators
might be necessary for this purpose, though it is a difficult
task to calculate such higher-order correlators. But, in view
of the significant results achieved by our theory, it is prom-
ising to pursue its further development.
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APPENDIX A: DERIVATION OF THE HOPPING KERNEL
OF GÖTZE AND SJÖGREN

In order to go beyond the idealized MCT, one has to con-
sider corrections to the idealized memory kernel, mq�z�
=mq

id�z�+
mq�z�. The extended MCT of Götze and Sjögren
�13,23� can be considered as a theory for such corrections,
and yields an expression for 
mq�z� in terms of the hopping
kernel �q�z� that involves couplings to currents. Their ex-
tended theory is formulated with the generalized kinetic
theory for phase-space density fluctuations, but essentially
the same expression for the hopping kernel �q�z� can be de-
rived also with the standard projection-operator approach
based on density and current-density fluctuations. In this ap-
pendix, we outline such a derivation.

We start from reviewing the derivation of the idealized
memory kernel mq

id�t� �see Ref. �10� for details�. Let us in-
troduce a projection operator P onto the subspace spanned
by the density fluctuations �q� and the current-density fluctua-
tions jq�

���ivi
� exp�iq� ·r�i� ��=x ,y ,z�. Here vi

� denotes the �

component of the velocity of ith particle. Within the
Zwanzig-Mori formalism �22�, one obtains based on the op-
erator P the exact equation �1a� for the coherent density
correlator �q�t�. The formal expression for the memory ker-
nel entering there reads

�q
2mq�t� =

m

NkBT
�F

q�
*eiQLQtFq�� , �A1�

where Q�1−P, and the fluctuating force is given by

Fq� = �t�q�̂ · j�q�� − iq
kBT

mSq
�q� . �A2�

Here q�̂ =q� /q. Under the mode-coupling approach, the fluctu-
ating forces are approximated by their projections onto the
subspace spanned by pair-density modes �k��p�; this is done by
introducing the second projection operator

P2X = �
k��p�

�k��p�
1

N2SkSp
��

k�
*�

p�
*X� , �A3�

and approximating Fq� �P2Fq� �Fq�
��, i.e.,

�q
2mq�t� �

m

NkBT
�F

q�
��*eiQLQtFq�

��� . �A4�

Notice here that the static factorization approximation

��
k�
*�

p�
*�k���p��� � �k�,k���p� ,p��N

2SkSp �k� � p� ,k�� � p��� , �A5�

is already used in the definition �A3� of P2. Within the con-
volution approximation for triple density correlations, one
finds for the projected fluctuating force

Fq�
�� = − i

�kBT

Nm �
k��p�

�q� ,k�+p��q�̂ · k�ck + q�̂ · p�cp��k��p� �A6a�

=− i
�kBT

Nm �
k�

q�̂ · k�ck�k��q�−k� . �A6b�

Substituting Eq. �A6a� into Eq. �A4� and then using the dy-
namical factorization approximation

��
k�
*�

p�
*eiQLQt�k���p��� � �k�,k���p� ,p��N

2SkSp�k�t��p�t�

�k� � p� ,k�� � p��� , �A7�

which factorizes averages of products evolving in time with
the generator QLQ into products of averages formed with
variables evolving with L, one obtains the idealized kernel
mq

id�t� given in Eqs. �2a� and �2b�.
To extend the idealized theory, one has to avoid the use of

the dynamical factorization approximation �A7�. We shall
therefore start from Eqs. �A4� and �A6b� for the memory
kernel mq�t�, to which the approximation �A7� has yet to be
applied. Notice, however, that the static factorization ap-
proximation �A5� is still assumed in our approach; this is
employed in the definition �A3� of P2, which is then used in
deriving Eq. �A6b�. Thus, there holds mq�0�=mq

id�0� at t=0.
By introducing a new projection operator P� onto the sub-

space spanned by Fq�
��, i.e.,

P�X = Fq�
�� m

NkBT�q
2mq�0�

�F
q�
��*X� , �A8�

one obtains the following Zwanzig-Mori equation of motion
for mq�t�:

�tmq�t� + mq�0�

0

t

dt�Lq�t − t��mq�t�� = 0. �A9�

Here the factor mq�0� in front of the convolution integral is
just for later convenience, and the formal expression for the
“memory kernel” Lq�t� is given by

mq�0�Lq�t� =
m

NkBT�q
2mq�0�

�R
q�
*eiQ�QLQQ�tRq�� , �A10�

in terms of the “fluctuating force”

Rq� = iQ�QLQFq�
��, �A11�

where we have introduced Q��1−P�. Substituting Eq.
�A6b� into Eq. �A11�, one finds
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Rq� =
�kBT

Nm
�

k�
q�̂ · k�ck�k� · j�k��p� + p� · j�p��k� − �k� · j�q�Sp + p� · j�q�Sk�
 ,

�A12�

in which p� =q� −k�.
Now, we apply the mode-coupling approximation to the

kernel Lq�t�. Because of the odd time reversal symmetry of
Rq�, the simplest mode-coupling approximation for Lq�t� can
be introduced by defining the projection operator P2� onto the
subspace panned by the product �k� jp�

� of the density and
current-density modes

P2�X = �
k�

�
�

�k� jp�
� m

N2kBTSk
��

k�
*j

p�
�*X� , �A13�

where we have used the factorization approximation

��
k�
*j

p�
�*�k��jp��

� � � �k�,k�����N2kBTSk/m . �A14�

Here and in the following, we use abbreviations p� �q� −k� and
p���q� −k��. We thus obtain under the mode-coupling approxi-
mation Rq� �P2�Rq� �Rq�

�j,

mq�0�Lq�t� �
m

NkBT�q
2mq�0�

�R
q�
�j*eiQ�QLQQ�tRq�

�j� .

�A15�

Within the convolution approximation for triple density cor-
relations, one finds

Rq�
�j =

�kBT

Nm
�

k�
�
�

V��q� ;k�,p���k� jp�
�, �A16a�

in which V� is given by

V��q� ;k�,p�� =
1

�2	�3 
 dk��q�̂ · k��ck��k��Sp�h	p��−k�	 + p��Sk�h	k��−k�	� .

�A16b�

Here k� refers to the � component of the vector k�, and the
function hq is given by hq=cqSq. When Eq. �A16a� is substi-
tuted into Eq. �A15�, the kernel Lq�t� is expressed in terms of
four-mode correlators, for which we invoke the following
dynamical factorization approximation:

��
k�
*j

p�
�*eiQ�QLQQ�t�k��jp��

� �

� �k�,k����k�
*eiLt�k���j

p�
�*eiLt jp�

�� + �k�,p����k�
*eiLt jk�

���j
p�
�*eiLt�p��

= �k�,k��N
2�kBT/m�Sk�k�t�

� �p̂�p̂��p
L�t� + ���� − p̂�p̂���p

T�t��

− �k�,p��N
2SkSp�k̂�p̂�/kp��t�k�t��t�p�t� . �A17�

Here �q
L�t� and �q

T�t� are longitudinal and transversal current
correlators, respectively, which are normalized to unity at t
=0. We then obtain the following form for the kernel Lq�t�
that involves couplings to current modes

Lq�t� =
 dk��VL�q� ;k�,p���k�t��p
L�t� + VT�q� ;k�,p���k�t��p

T�t�

+ V��q� ;k�,p���t�k�t��t�p�t�� . �A18a�

The vertex functions VL, VT, and V� are expressed in terms of
the thermal velocity, the static equilibrium quantities, and V�

given in Eq. �A16b� as

VL�q� ;k�,p�� =
�kBT

�2	�3m

SqSk

q2mq�0�2��
�

p̂�V��q� ;k�,p���2
,

�A18b�

VT�q� ;k�,p�� =
�kBT

�2	�3m

SqSk

q2mq�0�2��
�

V��q� ;k�,p��2

− ��
�

p̂�V��q� ;k�,p���2� , �A18c�

V��q� ;k�,p�� = −
�

�2	�3

SqSkSp

q2mq�0�2��
�

k̂�

k
V��q� ;p� ,k���

� ��
�

p̂�

p
V��q� ;k�,p��� . �A18d�

Finally, let us connect the Laplace transform of Lq�t� to
the hopping kernel �q�z� using the definition given by Eq.
�3a�. The Laplace transform of Eq. �A9� reads

mq�z� = −
mq�0�

z + mq�0�Lq�z�
. �A19�

In view of this expression, let us formally introduce the func-
tion Lq

id�z� in terms of the Laplace transform of the idealized
memory kernel mq

id�z� via

mq
id�z� = −

mq�0�
z + mq�0�Lq

id�z�
. �A20�

Here we have used the equality mq�0�=mq
id�0� at t=0 noticed

above. Substituting Eqs. �A19� and �A20� into Eq. �3a�, one
obtains for the hopping kernel

�q�z� = Lq�z� − Lq
id�z� . �A21�

From the functional form of Lq�t� given in Eq. �A18a� and
interpreting that Lq

id�z� in Eq. �A21� subtracts those contribu-
tions already accounted for by the idealized memory kernel
mq

id�z�, one understands that the expression �A21� for the
hopping kernel is essentially the same as the one derived by
Götze and Sjögren �13,23�.

APPENDIX B: EXTENDED MCT EQUATIONS
FOR THE MEAN-SQUARED DISPLACEMENT

AND THE NON-GAUSSIAN PARAMETER

1. Mean-squared displacement

The equation of motion for the mean-squared displace-
ment �r2�t� can be obtained from Eq. �1a� for �q

s�t� by ex-
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ploiting its relation to the small-q behavior of �q
s�t�=1

−q2�r2�t� /6+O�q4� �22�:

�t�r2�t� +
kBT

m



0

t

dt�m�0�
s �t − t���r2�t�� = 6

kBT

m
t . �B1�

Here we have introduced the q→0 limit of the memory ker-
nel via m�0�

s �t�� limq→0 q2mq
s�t�. To obtain m�0�

s �t�, it is more
convenient to rewrite Eq. �3b� in the form

mq
s�z� = mq

s id�z� + mq
s id�z��q

s�z�mq
s�z� , �B2�

from which one finds

m�0�
s �z� = m�0�

s id�z� + m�0�
s id�z���0�

s �z�m�0�
s �z� . �B3a�

Here m�0�
s id�z� refers to the corresponding q→0 limit of the

idealized memory kernel, and ��0�
s �z� is defined via ��0�

s �z�
� limq→0 �q

s�z� /q2. The former is given by �31�

m�0�
s id�t� =

1

6	2 
 dkk4�Skck
2�k�t��k

s�t� , �B3b�

whereas the latter reads after carrying out the q→0 limit in
Eq. �14�

��0�
s �z� = iwhopNca

2/6. �B3c�

Equations �B1�, �B3a�, and �B3b� constitute the extended-
MCT equations for the mean-squared displacement �r2�t�.

2. Non-Gaussian parameter

The non-Gaussian parameter �2�t� defined in Eq. �16� can
be obtained from the mean-squared displacement �r2�t� and
the mean-quartic displacement �r4�t�. The extended-MCT
equations for �r4�t� can be derived using the same method
employed above for �r2�t�, but with higher order expansions
in q.

Since �r4�t� is proportional to the fourth Taylor coefficient
in the small-q expansion of �q

s�t�=1−q2�r2 /3!+q4�r4 /5!
+O�q6� �22�, one can derive the following equation from the
small-q behavior of Eq. �1a� for �q

s�t�:

�t�r4�t� − 20�kBT/m�

0

t

dt��r2�t� + �kBT/m�

0

t

dt��m�0�
s �t

− t���r4�t�� − 10m�2�
s �t − t���r2�t��� = 0. �B4�

Here we introduced the memory kernel m�2�
s �t� via the

small-q expansion of q2mq
s�t�=m�0�

s �t�+q2m�2�
s �t� /2+O�q4�.

Using the corresponding expansion for the idealized memory
kernel mq

s id�t� and the expansion �q
s�z� /q2=��0�

s �z�
+q2��2�

s �z� /2+O�q4� for the hopping kernel, one obtains from
Eq. �B2�

m�2�
s �z� = m�2�

s id�z� + m�0�
s id�z���0�

s �z�m�2�
s �z�

+ m�0�
s id�z���2�

s �z�m�0�
s �z� + m�2�

s id�z���0�
s �z�m�0�

s �z� .

�B5a�

The expression for m�2�
s id�t� reads �31�

m�2�
s id�t� =

1

10	2 
 dkk4�Skck
2�k�t�� �2�k

s�t�
�k2 +

2

3k

��k
s�t�

�k
� ,

�B5b�

while one obtains from the small-q expansion of Eq. �14�

��2�
s �z� = iwhopNca

2�rs
2 − a2/20�/3. �B5c�

Here, rs is defined via the small-q expansion of the Lamb-
Mössbauer factor fq

s =1−q2rs
2+O�q4� �31�. Equations �B4�

and �B5a�–�B5c� along with Eqs. �B3a�–�B3c� constitute the
extended-MCT equations for �r4�t�. The non-Gaussian pa-
rameter �2�t� can then be obtained from Eq. �16�.

Let us consider the short-time behavior of �2�t� based on
the derived equations. From Eqs. �B1� and �B4� we find for
short times

�r2�t� = 3�kBT/m�2t2 + O�t4� , �B6�

�r4�t� = 5�kBT/m�4�1 +
m�2�

s �0�

2
�t4 + O�t6� . �B7�

Substituting these results into Eq. �16�, one obtains

�2�t� = �m�2�
s �0�

6
−

2

3
� + O�t2� . �B8�

Since �q
s�0�=1, we obtain from Eq. �B5b� m�2�

s id�0�=0. Using
this result, one can show that m�2�

s �0�=0 based on Eqs. �B5a�
and �B5c�. According to Eq. �B8�, this means that the initial
value of �2�t� within the extended MCT �and also within the
idealized MCT which is based on Newtonian dynamics� is
given by

�2�t → 0� = − 2/3. �B9�

This is in disagreement with the exact initial behavior �2�t
→0�=0 �22�. This discrepancy simply reflects that the ideal-
gas contribution to the memory kernel is discarded in the
mode-coupling approach. Indeed, the ideal-gas contribution
yields m�2�

s �0�=4 �22�, which when substituted into Eq. �B8�
recovers �2�t→0�=0. The ideal-gas contribution to the
memory kernel is responsible for the short-time ballistic re-
gime, but is irrelevant as far as the long-time dynamics is
concerned.
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